Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Physiol Plant ; 176(3): e14330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698648

RESUMEN

Wall-associated kinases (WAKs) have been determined to recognize pathogenic signals and initiate plant immune responses. However, the roles of the family members in host resistance against Valsa canker, a serious fungal disease of apples and pears, are largely unknown. Here, we identified MbWAK1 in Malus baccata, a resistant germplasm differentially expressed during infection by Valsa mali (Vm). Over-expression of MbWAK1 enhanced the Valsa canker resistance of apple and pear fruits and 'Duli-G03' (Pyrus betulifolia) suspension cells. A large number of phloem, cell wall, and lipid metabolic process-related genes were differentially expressed in overexpressed suspension cell lines in response to Valsa pyri (Vp) signals. Among these, the expression of xyloglucan endotransglucosylase/hydrolase (XTH) gene PbeXTH1 and sieve element occlusion B-like (SEOB) gene PbeSEOB1 were significantly inhibited. Transient expression of PbeXTH1 or PbeSEOB1 compromised the expressional induction of MbWAK1 and the resistance contributed by MbWAK1. In addition, PbeXTH1 and PbeSEOB1 suppressed the immune response induced by MbWAK1. Our results enriched the molecular mechanisms for MbWAK1 against Valsa canker and resistant breeding.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Malus , Enfermedades de las Plantas , Proteínas de Plantas , Pyrus , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/microbiología , Malus/genética , Malus/microbiología , Malus/inmunología , Malus/enzimología , Pared Celular/metabolismo
2.
Viruses ; 16(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38675852

RESUMEN

Fire blight, caused by the bacterium Erwinia amylovora, is a major threat to pear production worldwide. Bacteriophages, viruses that infect bacteria, are a promising alternative to antibiotics for controlling fire blight. In this study, we isolated a novel bacteriophage, RH-42-1, from Xinjiang, China. We characterized its biological properties, including host range, plaque morphology, infection dynamics, stability, and sensitivity to various chemicals. RH-42-1 infected several E. amylovora strains but not all. It produced clear, uniform plaques and exhibited optimal infectivity at a multiplicity of infection (MOI) of 1, reaching a high titer of 9.6 × 109 plaque-forming units (PFU)/mL. The bacteriophage had a short latent period (10 min), a burst size of 207 PFU/cell, and followed a sigmoidal one-step growth curve. It was stable at temperatures up to 60 °C but declined rapidly at higher temperatures. RH-42-1 remained viable within a pH range of 5 to 9 and was sensitive to extreme pH values. The bacteriophage demonstrates sustained activity upon exposure to ultraviolet radiation for 60 min, albeit with a marginal reduction. In our assays, it exhibited a certain level of resistance to 5% chloroform (CHCl3), 5% isopropanol (C3H8O), and 3% hydrogen peroxide (H2O2), which had little effect on its activity, whereas it showed sensitivity to 75% ethanol (C2H5OH). Electron microscopy revealed that RH-42-1 has a tadpole-shaped morphology. Its genome size is 14,942 bp with a GC content of 48.19%. Based on these characteristics, RH-42-1 was identified as a member of the Tectiviridae family, Alphatectivirus genus. This is the first report of a bacteriophage in this genus with activity against E. amylovora.


Asunto(s)
Bacteriófagos , Erwinia amylovora , Genoma Viral , Especificidad del Huésped , Microbiología del Suelo , Erwinia amylovora/virología , Erwinia amylovora/efectos de los fármacos , China , Bacteriófagos/aislamiento & purificación , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Enfermedades de las Plantas/microbiología , Filogenia , Pyrus/microbiología , Pyrus/virología , Concentración de Iones de Hidrógeno
3.
Food Chem ; 449: 139213, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631134

RESUMEN

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Asunto(s)
Fermentación , Aromatizantes , Odorantes , Pyrus , Saccharomyces cerevisiae , Sorbitol , Gusto , Vino , Vino/análisis , Vino/microbiología , Pyrus/química , Pyrus/microbiología , Pyrus/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Aromatizantes/metabolismo , Aromatizantes/química , Sorbitol/metabolismo , Sorbitol/análisis , Odorantes/análisis , Etanol/metabolismo , Etanol/análisis , Pichia/metabolismo , Metschnikowia/metabolismo , Frutas/química , Frutas/microbiología , Frutas/metabolismo
4.
Plant Physiol Biochem ; 210: 108627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663265

RESUMEN

Sporidiobolus pararoseus Y16, a species of significant ecological importance, has distinctive physiological and biological regulatory systems that aid in its survival and environmental adaptation. The goal of this investigation was to understand the complex interactions between physiological and molecular mechanisms in pear fruits as induced by S. pararoseus Y16. The study investigated the use of S. pararoseus Y16 and ascorbic acid (VC) in combination in controlling blue mold decay in pears via physiological and transcriptomic approach. The study results showed that treatment of S. pararoseus Y16 with 150 µg/mL VC reduced pears blue mold disease incidence from 43% to 11%. Furthermore, the combination of S. pararoseus Y16 and VC significantly inhibited mycelia growth and spore germination of Penicillium expansum in the pear's wounds. The pre-treatment did not impair post-harvest qualities of pear fruit but increased antioxidant enzyme activity specifically polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT) activities as well as phenylalanine ammonia-lyase (PAL) enzyme activity. The transcriptome analysis further uncovered 395 differentially expressed genes (DEGs) and pathways involved in defense mechanisms and disease resistance. Notable pathways of the DEGs include plant-pathogen interaction, tyrosine metabolism, and hormone signal transduction pathways. The integrative approach with both physiological and transcriptomic tools to investigate postharvest pathology in pear fruits with clarification on how S. pararoseus Y16 enhanced with VC, improved gene expression for disease defense, and create alternative controls strategies for managing postharvest diseases.


Asunto(s)
Ácido Ascórbico , Estrés Oxidativo , Penicillium , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Penicillium/fisiología , Penicillium/efectos de los fármacos , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Enfermedades de las Plantas/microbiología , Estrés Oxidativo/efectos de los fármacos , Perfilación de la Expresión Génica , Basidiomycota/fisiología , Transcriptoma
5.
Pest Manag Sci ; 80(6): 3010-3021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38318950

RESUMEN

BACKGROUND: Valsa canker caused by Valsa pyri is one of the most destructive diseases of pear, leading to severe yield and economic losses. Volatile organic compounds (VOCs) from endophytes have important roles in the regulation of plant disease. In this study, we investigated the biocontrol activity of the endophytic fungus Aspergillus niger strain La2 and its antagonistic VOCs against pear Valsa canker. RESULTS: Strain La2 exhibited an obvious inhibitory effect against V. pyri. A colonization assay suggested that strain La2 could complete its life cycle on pear twigs. The symptoms of pear Valsa canker were weakened on detached pear twigs after treatment with strain La2. In addition, VOCs from strain La2 also significantly suppressed mycelial growth in V. pyri. Based on the results of headspace solid-phase microextraction/gas chromatography-mass spectrometry analysis, six possible VOCs produced by strain La2 were detected, of which 2,4-di-tert-butylphenol and 4-methyl-1-pentanol were the main antagonistic VOCs in terms of their effect on pear Valsa canker in vitro and in vivo. Further results showed that 4-methyl-1-pentanol could destroy the V. pyri hyphal structure and cell membrane integrity. Importantly, the activities of pear defense-related enzymes (polyphenol oxidase, phenylalanine ammonia lyase and superoxide dismutase) were enhanced after 4-methyl-1-pentanol treatment in pear twigs, suggesting that 4-methyl-1-pentanol might induce a plant disease resistance response. CONCLUSION: Aspergillus niger strain La2 and its VOCs 2,4-di-tert-butylphenol and 4-methyl-1-pentanol have potential as novel biocontrol agents of pear Valsa canker. © 2024 Society of Chemical Industry.


Asunto(s)
Aspergillus niger , Enfermedades de las Plantas , Pyrus , Compuestos Orgánicos Volátiles , Pyrus/microbiología , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Endófitos/fisiología , Agentes de Control Biológico/farmacología
6.
Microbiol Spectr ; 12(3): e0283323, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323825

RESUMEN

The Pseudomonas syringae species complex is a heterogeneous group of plant pathogenic bacteria associated with a wide distribution of plant species. Advances in genomics are revealing the complex evolutionary history of this species complex and the wide array of genetic adaptations underpinning their diverse lifestyles. Here, we genomically characterize two P. syringae isolates collected from diseased Callery pears (Pyrus calleryana) in Berkeley, California in 2019 and 2022. We also isolated a lytic bacteriophage, which we characterized and evaluated for biocontrol efficiency. Using a multilocus sequence analysis and core genome alignment, we classified the P. syringae isolates as members of phylogroup 2, related to other strains previously isolated from Pyrus and Prunus. An analysis of effector proteins demonstrated an evolutionary conservation of effectoromes across isolates classified in PG2 and yet uncovered unique effector profiles for each, including the two newly identified isolates. Whole-genome sequencing of the associated phage uncovered a novel phage genus related to Pseudomonas syringae pv. actinidiae phage PHB09 and the Flaumdravirus genus. Finally, using in planta infection assays, we demonstrate that the phage was equally useful in symptom mitigation of immature pear fruit regardless of the Pss strain tested. Overall, this study demonstrates the diversity of P. syringae and their viruses associated with ornamental pear trees, posing spill-over risks to commercial pear trees and the possibility of using phages as biocontrol agents to reduce the impact of disease.IMPORTANCEGlobal change exacerbates the spread and impact of pathogens, especially in agricultural settings. There is a clear need to better monitor the spread and diversity of plant pathogens, including in potential spillover hosts, and for the development of novel and sustainable control strategies. In this study, we characterize the first described strains of Pseudomonas syringae pv. syringae isolated from Callery pear in Berkeley, California from diseased tissues in an urban environment. We show that these strains have divergent virulence profiles from previously described strains and that they can cause disease in commercial pears. Additionally, we describe a novel bacteriophage that is associated with these strains and explore its potential to act as a biocontrol agent. Together, the data presented here demonstrate that ornamental pear trees harbor novel P. syringae pv. syringae isolates that potentially pose a risk to local fruit production, or vice versa-but also provide us with novel associated phages, effective in disease mitigation.


Asunto(s)
Bacteriófagos , Pyrus , Bacteriófagos/genética , Pyrus/microbiología , Pseudomonas syringae/genética , Myoviridae , Genómica , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
7.
Plant Dis ; 108(2): 296-301, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37669173

RESUMEN

Erwinia pyrifoliae, a causal agent of black shoot blight in apple and pear trees, is a plant pathogenic bacterium first reported in South Korea. The symptoms of black shoot blight are very similar to those of the fire blight disease in apple and pear trees caused by E. amylovora, as E. pyrifoliae has a genetically very close relationship with E. amylovora. Recently, there have been reports that E. pyrifoliae causes disease in European strawberries, resulting in severe fruit loss that aroused great concern about its spread, distribution, and host range. Therefore, it is essential to establish a trustworthy approach to understanding the distribution patterns of E. pyrifoliae based on the genetic background to strengthen the barrier of potential spreading risks, although advanced methods have been provided to accurately detect E. pyrifoliae and E. amylovora. Consequently, this study discovered a noble and noteworthy gene, rsxC, capable of providing the pathogen genotype by comparing E. pyrifoliae genomic sequences in the international representative genome archive. Different numbers of 40-unit amino acid repeats in this gene among the strains induced intraspecific traits in RsxC. By comparing their repeat pattern, E. pyrifoliae isolates were divided into two main groups, branching into several clades via sequence alignment of 35 E. pyrifoliae isolates from various apple orchards from 2020 to 2021 in South Korea. The newly discovered quadraginta amino acid repeat within this gene would be a valuable genetic touchstone for determining the genotype and distribution pattern of E. pyrifoliae strains, ultimately leading to exploring their evolution. The function of amino acid repeats and the biological significance of strains need to be elucidated further.


Asunto(s)
Erwinia , Malus , Pyrus , Transporte de Electrón , Erwinia/genética , Erwinia/metabolismo , Pyrus/microbiología , Variación Genética , Aminoácidos/genética , Aminoácidos/metabolismo
8.
Int J Food Microbiol ; 410: 110465, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37980812

RESUMEN

The primary reason for postharvest loss is blue mold disease which is mainly caused by Penicillium expansum. Strategies for disease control greatly depend on the understanding of mechanisms of pathogen-fruit interaction. A member of the glycoside hydrolase family, ß-glucosidase 1b (eglB), in P. expansum was significantly upregulated during postharvest pear infection. Glycoside hydrolases are a large group of enzymes that can degrade plant cell wall polymers. High homology was found between the glycoside hydrolase superfamily in P. expansum. Functional characterization and analysis of eglB were performed via gene knockout and complementation analysis. Although eglB deletion had no notable effect on P. expansum colony shape or microscopic morphology, it did reduce the production of fungal hyphae, thereby reducing P. expansum's sporulation and patulin (PAT) accumulation. Moreover, the deletion of eglB (ΔeglB) reduced P. expansum pathogenicity in pears. The growth, conidia production, PAT accumulation, and pathogenicity abilities of ΔeglB were restored to that of wild-type P. expansum by complementation of eglB (ΔeglB-C). These findings indicate that eglB contributes to P. expansum's development and pathogenicity. This research is a contribution to the identification of key effectors of fungal pathogenicity for use as targets in fruit safety strategies.


Asunto(s)
Malus , Patulina , Penicillium , Pyrus , Pyrus/microbiología , Glicósido Hidrolasas , Frutas/microbiología , Penicillium/metabolismo , Patulina/metabolismo , Malus/microbiología
9.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139343

RESUMEN

Pear black spot disease, caused by Alternaria alternata, is a devastating disease in pears and leads to enormous economic losses worldwide. In this investigation, we isolated a Streptomyces odonnellii SZF-179 from the rhizosphere soil of pear plants in China. Indoor confrontation experiments results showed that both SZF-179 and its aseptic filtrate had excellent inhibitory effects against A. alternata. Afterwards, the main antifungal compound of SZF-179 was identified as polyene, with thermal and pH stability in the environment. A microscopic examination of A. alternata mycelium showed severe morphological abnormalities caused by SZF-179. Protective studies showed that SZF-179 fermentation broth could significantly reduce the diameter of the necrotic lesions on pear leaves by 42.25%. Furthermore, the potential of fermentation broth as a foliar treatment to control black leaf spot was also evaluated. Disease indexes of 'Hosui' and 'Wonwhang' pear plants treated with SZF-179 fermentation broth were lower than that of control plants. Overall, SZF-179 is expected to be developed into a safe and broad-spectrum biocontrol agent. No studies to date have evaluated the utility of S. odonnellii for the control of pear black spot disease; our study fills this research gap. Collectively, our findings provide new insights that will aid the control of pear black spot disease, as well as future studies of S. odonnellii strains.


Asunto(s)
Pyrus , Pyrus/microbiología , Antifúngicos/farmacología , Alternaria
10.
Pestic Biochem Physiol ; 196: 105641, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945237

RESUMEN

Valsa canker, a fungal disease caused by Valsa pyri, poses a significant threat to the pear industry. Currently, chemical control serves as the primary method to control valsa canker. However, the emergence of resistance can pose a challenge to its effectiveness. Biopesticides are a relatively new option for disease control, but there is limited research on their effects on pear Valsa canker. To determine the effectiveness of different biopesticides, we selected 10 common biopesticides to test their inhibition efficacy and impacts on mycelial growth rate and conidial germination. Results showed that carvacrol had very good antifungal activity; therefore its inhibition mechanisms were further investigated. Electron microscopy and transcriptome data analysis were utilized to examine how carvacrol impeded V. pyri by inducing mycelium deformation, wrinkling, and rupture. Carvacrol also affected plant hormones, thus improving plant resistance to the disease. This study lays the groundwork for the utilization of 10 distinct biopesticides to control V. pyri while elucidating how carvacrol harms the pathogen and prompts the plant defense control mechanism.


Asunto(s)
Ascomicetos , Pyrus , Pyrus/microbiología , Agentes de Control Biológico/farmacología , Transcriptoma , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
11.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895155

RESUMEN

Valsa pyri-induced pear Valsa canker is among the most prevalent diseases to impact pear quality and yields. Biocontrol strategies to control plant disease represent an attractive alternative to the application of fungicides. In this study, the potential utility of Bacillus atrophaeus strain HF1 was assessed as a biocontrol agent against pear Valsa canker. Strain HF1 suppressed V. pyri mycelium growth by 61.20% and induced the development of malformed hyphae. Both culture filtrate and volatile organic compounds (VOCs) derived from strain HF1 were able to antagonize V. pyri growth. Treatment with strain HF1-derived culture filtrate or VOCs also induced the destruction of hyphal cell membranes. Headspace mixtures prepared from strain HF1 were analyzed, leading to the identification of 27 potential VOCs. Of the thirteen pure chemicals tested, iberverin, hexanoic acid, and 2-methylvaleraldehyde exhibited the strongest antifungal effects on V. pyri, with respective EC50 values of 0.30, 6.65, and 74.07 µL L-1. Fumigation treatment of pear twigs with each of these three compounds was also sufficient to prevent the development of pear Valsa canker. As such, these results demonstrate that B. atrophaeus strain HF1 and the volatile compounds iberverin, hexanoic acid, and 2-methylvaleraldehyde exhibit promise as novel candidate biocontrol agents against pear Valsa canker.


Asunto(s)
Ascomicetos , Pyrus , Pyrus/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
12.
Phytopathology ; 113(12): 2143-2151, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37505073

RESUMEN

Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a devastating disease that occurs on rosaceous plants, including pears and apples. E. amylovora is indigenous to North America and was spread to the Eurasian continent in the second half of the 20th century through contaminated plant materials. In 2016, fire blight was first observed in Yili, Xinjiang Province, in Northwestern China. Since then, it has spread to most pear-producing regions in Xinjiang Province and parts of Gansu Province. The disease has caused severe damage to China's pear and apple industries, including the 2017 disease epidemic in Korla, Xinjiang, which caused an overall yield reduction of 30 to about 50% in Korla and the destruction of over 1 million pear trees. Over the past few years, a combined effort of research, extension, and education by the Chinese government, scientists, and fruit growers has greatly alleviated outbreaks and epidemics in affected regions while successfully limiting the further spread of fire blight to new geographical regions. Here, we review the occurrence, spread, and damage of this disease to the Chinese fruit industry, as well as the management options used in China and their outcomes. We also discuss future perspectives for restraining the spread and alleviating the damage of fire blight in China.


Asunto(s)
Erwinia amylovora , Malus , Pyrus , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Malus/microbiología , Frutas/microbiología , Pyrus/microbiología
13.
Phytopathology ; 113(12): 2187-2196, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37287124

RESUMEN

Pantoea vagans C9-1 (C9-1) is a biological control bacterium that is applied to apple and pear trees during bloom for suppression of fire blight, caused by Erwinia amylovora. Strain C9-1 has three megaplasmids: pPag1, pPag2, and pPag3. Prior bioinformatic studies predicted these megaplasmids have a role in environmental fitness and/or biocontrol efficacy. Plasmid pPag3 is part of the large Pantoea plasmid (LPP-1) group that is present in all Pantoea spp. and has been hypothesized to contribute to environmental colonization and persistence, while pPag2 is less common. We assessed fitness of C9-1 derivatives cured of pPag2 and/or pPag3 on pear and apple flowers and fruit in experimental orchards. We also assessed the ability of a C9-1 derivative lacking pPag3 to reduce populations of E. amylovora on flowers and disease incidence. Previously, we determined that tolerance to stresses imposed in vitro was compromised in derivatives of C9-1 lacking pPag2 and/or pPag3; however, in this study, the loss of pPag2 and/or pPag3 did not consistently reduce the fitness of C9-1 on flowers in orchards. Over the summer, pPag3 contributed to survival of C9-1 on developing apple and pear fruit in two of five trials, whereas loss of pPag2 did not significantly affect survival of C9-1. We also found that loss of pPag3 did not affect C9-1's ability to reduce E. amylovora populations or fire blight incidence on apple flowers. Our findings partially support prior hypotheses that LPP-1 in Pantoea species contributes to persistence on plant surfaces but questions whether LPP-1 facilitates host colonization.


Asunto(s)
Erwinia amylovora , Malus , Pantoea , Pyrus , Malus/microbiología , Frutas , Pantoea/genética , Pyrus/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Plásmidos , Erwinia amylovora/genética , Flores/microbiología
14.
Mol Plant Pathol ; 24(9): 1107-1125, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37312259

RESUMEN

Diseases caused by Alternaria alternata and Botryosphaeria dothidea diminish pear yield and quality, and restrict the pear agricultural industry. Lignification is a conserved mechanism for plant resistance against pathogen invasion. The regulatory mechanisms underlying defence-induced lignification in pear in response to fungal pathogen infection remain unknown. In this study, analysis of lignification level and lignin content in pear revealed that A. alternata and B. dothidea induced lignification, and transcriptomics showed that lignin biosynthesis was affected. To explore whether laccases (LACs) mediated by miR397 regulate lignification in pear, we investigated the role of PcmiR397 in repressing the expression of PcLACs using 5'-RNA ligase-mediated-RACE and co-transformation in tobacco. Opposite expression patterns for PcmiR397 and PcLAC target genes were observed in pear in response to pathogens. Transient transformation in pear demonstrated that silencing PcmiR397 and overexpressing a single PcLAC enhanced resistance to pathogens via lignin synthesis. To further reveal the mechanism underpinning the PcMIR397 response of pear to pathogens, the PcMIR397 promoter was analysed, and pMIR397-1039 was found to be inhibited by pathogen infection. The transcription factor PcMYB44 was up-regulated, and it bound to the PcMIR397 promoter and inhibited transcription following pathogen infection. The results demonstrate the role of PcmiR397-PcLACs in broad-spectrum resistance to fungal disease, and the potential role of PcMYB44 involved in the miR397-PcLAC module in regulating defence-induced lignification. The findings provide valuable candidate gene resources and guidance for molecular breeding to improve resistance to fungal disease in pear.


Asunto(s)
Pyrus , Pyrus/genética , Pyrus/microbiología , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Resistencia a la Enfermedad/genética
15.
Plant Dis ; 107(4): 1009-1011, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37076957

RESUMEN

Scab on pear is caused by two pathogens, Venturia pyrina on European pear and V. nashicola on Asian pear. Five races of V. pyrina and seven races of V. nashicola have been reported thus far and pathological specialization occurs in both species. Among them, the five race isolates of V. pyrina were previously found from wild Syrian pear. In this study, mating and morphological characteristics of Venturia isolates from Syrian pear were compared with those of isolates from European and Japanese pear cultivated in Japan. The results from mating experiments showed that Syrian pear isolates were compatible with European pear isolates of V. pyrina to produce ascospores but were sterile with V. nashicola isolates in culture. Interestingly, however, the size and shape of conidia collected from naturally infected leaves of Syrian pear resembled those of V. nashicola. This finding may open the way to study coevolution between pear hosts and Venturia spp. in the future.


Asunto(s)
Ascomicetos , Pyrus , Pyrus/microbiología , Ascomicetos/genética , Siria , Japón
16.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674895

RESUMEN

Calcium/calmodulin-dependent protein kinase (CaMK), a key downstream target protein in the Ca2+ signaling pathway of eukaryotes, plays an important regulatory role in the growth, development and pathogenicity of plant fungi. Three AaCaMKs (AaCaMK1, AaCaMK2 and AaCaMK3) with conserved PKC_like superfamily domains, ATP binding sites and ACT sites have been cloned from Alternaria alternata, However, their regulatory mechanism in A. alternata remains unclear. In this study, the function of the AaCaMKs in the development, infection structure differentiation and pathogenicity of A. alternata was elucidated through targeted gene disruption. The single disruption of AaCaMKs had no impact on the vegetative growth and spore morphology but significantly influenced hyphae growth, sporulation, biomass accumulation and melanin biosynthesis. Further expression analysis revealed that the AaCaMKs were up-regulated during the infection structure differentiation of A. alternata on hydrophobic and pear wax substrates. In vitro and in vivo analysis further revealed that the deletion of a single AaCaMKs gene significantly reduced the A. alternata conidial germination, appressorium formation and infection hyphae formation. In addition, pharmacological analysis confirmed that the CaMK specific inhibitor, KN93, inhibited conidial germination and appressorium formation in A. alternata. Meanwhile, the AaCaMKs genes deficiency significantly reduced the A. alternata pathogenicity. These results demonstrate that AaCaMKs regulate the development, infection structure differentiation and pathogenicity of A. alternata and provide potential targets for new effective fungicides.


Asunto(s)
Fungicidas Industriales , Pyrus , Pyrus/microbiología , Virulencia/genética , Alternaria , Fungicidas Industriales/farmacología , Fungicidas Industriales/metabolismo
17.
Plant Sci ; 329: 111603, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36709003

RESUMEN

Pear ring rot, a fungal disease caused by Botryosphaeria dothidea (B. dothidea), is one of the most damaging diseases in pear production, affecting fruit yield and causing economic losses. It is not clear whether dopamine, one of the catecholamines, has any role in pear ring rot resistance. In this study, we found that dopamine treatment of B. dothidea resulted in a significant upregulation of PbrTYDC expression compared to H2O treatment (control) and reduced the levels of Hydrogen Peroxide (H2O2) and Superoxide Anion (O2-), increased Peroxidase (POD), Catalase (CAT), Superoxide Dismutase (SOD) and Phenylalanine Ammonia-Lyase (PAL) activities, and induced a significant upregulation of related gene expression. Dopamine treatment promoted the oxidationreduction capacity of the AsA-GSH cycle to scavenge Reactive Oxygen Species (ROS), increased the expression of autophagy-related genes and the accumulation of autophagic structures, and enhanced autophagic activity. Silencing PbrTYDC and PbrATG8 in pear increased H2O2 and·O2-, decreased POD, CAT and SOD activities and reduced resistance to B. dothidea, which was restored by dopamine treatment. In conclusion, exogenous dopamine enhances resistance to B. dothidea by increasing the antioxidant capacity and autophagic activity of pears, and this study provides new insights for subsequent studies on B. dothidea as well as autophagy.


Asunto(s)
Pyrus , Pyrus/microbiología , Dopamina , Peróxido de Hidrógeno , Peroxidasa , Superóxido Dismutasa , Autofagia
18.
Plant Dis ; 107(3): 616-619, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35852904

RESUMEN

As a black shoot blight disease-causing agent, Erwinia pyrifoliae was first reported in 1995 in Korea. A total of 101 isolates of E. pyrifoliae were isolated from samples showing bacterial symptoms collected from apple and pear orchards between 2020 and 2021. These isolates were screened for streptomycin resistance, with one from an orchard in Gwangju showing resistance at 100 µg/ml streptomycin. This streptomycin-resistant E. pyrifoliae (EpSmR) isolate was identified via polymerase chain reaction amplification of the strA/strB gene and an internal region of the ribosomal rpsL gene containing codon 43. EpSmR has a point mutation that altered this codon from lysine (AAA) to threonine (ACA). The strA and strB genes were not identified in EpSmR. EpSmR showed a high resistance to streptomycin (>50,000 µg/ml). This is the first study reporting EpSmR, which emerged due to a mutation in codon 43 of the rpsL gene.


Asunto(s)
Erwinia , Pyrus , Estreptomicina/farmacología , Erwinia/genética , Pyrus/microbiología , República de Corea
19.
Plant Dis ; 107(3): 624-627, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35900343

RESUMEN

Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a highly destructive disease of apple and pear. Because the apple tree gets systemically infected with E. amylovora and eventually dies, E. amylovora is a considerably important pathogen in the orchard that requires long-term management. In addition, it is crucial to prevent the spread of the pathogen by expeditious diagnosis. In this study, via comparative approaches to the genome sequences of the strains of various Erwinia spp., we designed specific primers targeting a hypothetical gene that is single copy and located in the chromosomal DNA of E. amylovora. This primer set specifically amplified the DNA of E. amylovora but no other bacteria, including E. pyrifoliae, Pectobacterium spp., Pantoea spp., and Dickeya chrysanthemi. Furthermore, the SYBR Green-based real-time PCR using the primer set allowed accurate estimation of the population of E. amylovora. Developing a rapid and accurate diagnostic method using the novel primer set enables effective defense against pathogen spread through continuous monitoring and quick response.


Asunto(s)
Erwinia amylovora , Malus , Pyrus , Erwinia amylovora/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Malus/microbiología , Pyrus/microbiología
20.
Phytopathology ; 113(2): 309-320, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36167507

RESUMEN

Brown and black spots, caused by Stemphylium and Alternaria species, are important fungal diseases affecting European pear (Pyrus communis) in orchards. Both fungal genera cause similar symptoms, which could favor misidentification, but Alternaria spp. are increasingly reported due to the changing climatic conditions. In this study, Alternaria spp. were isolated from symptomatic leaves and fruits of European pear, and their pathogenicity was evaluated on pear fruits from cultivar Abate Fétel, and molecular and chemical characterization were performed. Based on maximum likelihood phylogenetic analysis, 15 of 46 isolates were identified as A. arborescens species complex (AASC), 27 as A. alternata, and four as Alternaria sp. Both species were isolated from mature fruits and leaves. In pathogenicity assays on pear fruits, all isolates reproduced the symptoms observed in the field, by both wound inoculation and direct penetration. All but one isolate produced Alternaria toxins on European pears, including tenuazonic acid and alternariol (89.1% of the isolates), alternariol monomethyl ether (89.1%), altertoxin I (80.4%), altenuene (50.0%), and tentoxin (2.2%). These isolates also produced at least two mycotoxins, and 43.5% produced four mycotoxins, with an average total concentration of the Alternaria toxins exceeding 7.58 × 106 ng/kg. Our data underline the potential risks for human health related to the high mycotoxin content found on fruits affected by black spot. This study also represents the first report of AASC as an agent of black spot on European pear in Italy.


Asunto(s)
Micotoxinas , Pyrus , Humanos , Frutas/microbiología , Alternaria/genética , Pyrus/microbiología , Filogenia , Virulencia , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...